Moreover, the coatings formulated with MBR9668 exhibit excellent thermal stability, allowing them to perform well in various temperature ranges without compromising their consistency or effectiveness. This feature is particularly valuable in industries such as aerospace and manufacturing, where components must withstand extreme conditions.
The assessment was conducted following a rigorous methodology and taking into consideration many thousands of studies that have become available since EFSA’s previous assessment in 2016, including new scientific evidence and data on nanoparticles.
Over the last several years, nanoparticles have come under scrutiny for adverse health effects. Nanoparticles are ultrafine particles between 1 to 100 nanometers in diameter. (To put this in perspective, the average human hair is around 80,000 nanometers thick.) Because of their size, which can be engineered and manipulated at the atomic or molecular level, nanoparticles exhibit unique physical, chemical, and biological properties. Titanium dioxide is one of the most commonly produced nanoparticles in the world.
Nanoparticles
Still many experts say the body of research does not support the current health concerns being expressed about titanium dioxide.
What Is Titanium Dioxide?
On the other hand, the U.S. Food and Drug Administration (FDA) in their Final Administrative Order on Sunscreen Drug Products posted in September 2021 still accepts titanium dioxide up to 25% in the list of Generally Recognized As Safe and Effective (GRASE) in the main document, without further clarification on what kind or size of particles [9]. However, on page 24 (Sunscreen containing nanomaterials) FDA clearly “distinguish nanomaterials from other forms of these ingredients'' (zinc oxide and titanium dioxide) and ask for comments on “any particular nanomaterials that you believe should not be permitted for use in OTC sunscreen products”. To the best of our knowledge, this Agency did not ban the use of nanoparticulate titanium dioxide in any form, even though it is mentioned on page 34 that the anatase form is the more photoactive one, due to the lack of evidence with real sunscreens OTC (over the counter) in vivo. Moreover, other regulations in Latin America (MERCOSUR agreement, 2006) do not state clearly their position on the use of nanoparticulate TiO2NPs [10].
Free Sample TiO2 DongFang R5566 Titanium Dioxide
Chemical formula: BaO5S2Zn2
This article discusses the discovery of phosphorescent lithopone on watercolor drawings by American artist John La Farge dated between 1890 and 1905 and the history of lithopone in the pigment industry in the late 19th and early 20th centuries. Despite having many desirable qualities for use in white watercolor or oil paints, the development of lithopone as an artists’ pigment was hampered by its tendency to darken in sunlight. Its availability to, and adoption by, artists remain unclear, as colormen's trade catalogs were generally not explicit in describing white pigments as containing lithopone. Further, lithopone may be mistaken for lead white during visual examination and its short-lived phosphorescence can be easily missed by the uninformed observer. Phosphorescent lithopone has been documented on only one other work-to-date: a watercolor by Van Gogh. In addition to the history of lithopone's manufacture, the article details the mechanism for its phosphorescence and its identification aided by Raman spectroscopy and spectrofluorimetry.
In short, no, research demonstrates that E171 is safe when consumed in normal situations.
Moreover, how we're exposed to an ingredient matters significantly in terms of our health and potential toxicity.
Research shows that inhaling titanium dioxide particles in significant quantities over time can cause adverse health outcomes. Unless you work in an industrial setting, inhaling substantial amounts of titanium dioxide is highly unlikely.
Research supports that applying titanium dioxide to the skin in the form of sunscreens, makeup, and other topical products does not pose a health risk.
Overwhelmingly, research that's relevant to human exposure shows us that E171 is safe when ingested normally through foods and drugs (1,2).
Again, other research suggests that E171 could cause harm; however, those research processes did not design their studies to model how people are exposed to E171. Research that adds E171 to drinking water, utilizes direct injections, or gives research animals E171 through a feeding apparatus is not replicating typical human exposure, which occurs through food and medicine consumption.
Read more in-depth about the titanium dioxide risk at go.msu.edu/8Dp5.
Titanium dioxide, a versatile and widely used material, finds its application in various industries including the rubber industry
. This white pigment is known for its excellent UV resistance, durability, and opacity, making it an ideal choice for enhancing the properties of rubber products.
Background and overview
Globally, Iron Oxide is the second largest inorganic pigment after Titanium Dioxide and the first largest color inorganic pigment. Iron oxide pigments mainly include iron oxide red, yellow, black and brown with iron oxide as the basic material. Iron oxide yellow, also known as hydroxyl iron oxide (FeOOH), will be dehydrated and decomposed into red at about 177 ℃, so the application of ordinary iron yellow pigment in high-temperature occasions such as plastic processing and baking coatings is limited. Iron oxide yellow pigment can improve its temperature resistance through surface coating, so as to expand the application field of iron oxide yellow pigment.
The chemical formula of iron oxide yellow (also known as hydroxyl iron) is α- Fe2O3 · H2O or α- FeOOH, with needle like structure and yellow powder, is a kind of particle size less than 0.1 μ m. Iron series pigment with good dispersibility in transparent medium has strong coloring power, high covering power, insoluble in alkali and slightly soluble in ACID. Synthetic iron oxide yellow has the characteristics of light resistance, good dispersion, non-toxic, tasteless and difficult to be absorbed by human body. It is widely used in coatings, plastics, ink and pharmaceutical industry.
Physical and chemical properties and structure
1. Iron oxide yellow pigment has acid and alkali resistance, resistance to general weak and dilute acids, and is very stable in alkaline solution of any concentration.
2. Iron oxide yellow pigment has certain light resistance, heat resistance and weather resistance. Its coating color is durable and can keep the coating from being damaged in light. Iron oxide yellow pigment is stable in a certain temperature range, but beyond the limit temperature, its color begins to change, and the degree of change is more significant with the increase of temperature. Iron oxide yellow pigment is not affected by cold, heat, dry and wet weather conditions.
3. Iron oxide yellow pigment is very stable in any ambient atmosphere (such as gases containing H 2S, Co, so 2, HCl, no, etc.). And resistant to pollution, water, oil and solvent penetration, insoluble in water, mineral oil or vegetable oil.
4. Iron oxide yellow pigment has strong coloring power and high hiding power. With the decrease of pigment particle size, its coloring power is stronger.
application
Nano iron oxide yellow has the characteristics of acid resistance, alkali resistance, non toxicity and low price. It is widely used in coatings, plastics and rubber. The particle size of nano iron yellow is less than 100 nm, which makes it have some unique characteristics. When light shines on its surface, transmission and diffraction will occur, showing transparent yellow, and can strongly absorb ultraviolet rays, Therefore, it can be used as a functional pigment for the surface paint of high-grade cars, precision instruments, bicycles, motorcycles, cosmetics, food, drugs and other coloring additives.
Although barium sulfate is almost completely inert, zinc sulfide degrades upon exposure to UV light, leading to darkening of the pigment. The severity of this UV reaction is dependent on a combination of two factors; how much zinc sulfide makes up the pigments formulation, and its total accumulated UV exposure. Depending on these factors the pigment itself can vary in shade over time, ranging from pure white all the way to grey or even black. To suppress this effect, a dopant may be used, such as a small amount of cobalt salts, which would be added to the formulation. This process creates cobalt-doped zinc sulfide. The cobalt salts help to stabilize zinc sulfide so it will not have as severe a reaction to UV exposure.
Safety
Europe
Tio2 Powder CR-930 Titanium Dioxide Free Sample


That being said, most experts tell us that these potential health risks shouldn’t trouble us, because titanium dioxide has been used in the market for decades, and no adverse reactions have been reported by users. The bottom line is that when used correctly, titanium dioxide should be a safe ingredient that’s safe for all skin types, every day