3. Cleanliness Keep the belt and pulleys free from oil, dirt, and debris to ensure smooth operation and reduce the risk of slippage.
1.Mainly used in latex paints, water-based paints, inks, rubber, plastics, etc., replacing 30% of rutile-type titanium dioxide in latex paints, still maintaining the original film properties, and has the effect of reducing costs.
- The production process of titanium dioxide involves several stages, starting with the extraction of raw materials from mineral ores such as ilmenite, rutile, and anatase. These ores are then processed through various methods, including the sulfate and chloride processes, to produce high-purity titanium dioxide powder. The sulfate process involves treating the ore with sulfuric acid to extract titanium dioxide, while the chloride process uses chlorine gas to produce a purer form of the pigment.
Fluorine Chemical, Lithopone 30% CAS No. 1345-05-7, white powder, relative density: 4.136 ~ 4.39 g / mL, insoluble in water. It is a mixture of zinc sulfide and barium sulfate. Inorganic white pigment, widely used in plastics such as polyolefin, vinyl resin, ABS resin, polystyrene, polycarbonate, nylon and polyoxymethylene, and white pigments of paints and inks. It is less effective in polyurethane and amino resins and less suitable in fluoroplastics. It is also used for coloring of rubber products, paper, varnish, tarpaulin, leather, watercolor paint, paper, enamel, and the like. Used as a binder in the production of electric beads.
In a statement sent to USA TODAY on Sunday, Justin Comes, vice president of research and development for Skittles maker Mars Wrigley North America, said the company couldn't comment on pending litigation – but that its use of titanium dioxide and all Mars Wrigley ingredients are safe and manufactured in compliance with strict quality and safety requirements established by food safety regulators, including the FDA.
In the same year (2019), the Netherlands Food and Consumer Product Safety Authority (NVWA) also delivered an opinion on possible health effects of food additive titanium dioxide, which highlighted the importance of examining immunotoxicological effects in addition to potential reprotoxicological effects.
Drobne et al. used the terrestrial arthropod Porcellio scaber as a test organism for determining the cytotoxic effect of TiO2 NPs (anatase). The animals were exposed to TiO2 NPs of two different sizes (25 nm and 75 nm) in the concentration range 10–1000 μg TiO2/g dry food for 3 to 14 days. No adverse effects, such as mortality, body weight changes or reduced feeding, were observed. In fact, quite the opposite, an enhanced feeding rate, food absorption efficiency and increase in catalase activity were observed. The intensity of these responses appeared to be time- but not dose-dependent. It should also be noted that the concentrations tested in this study were much higher than the predicted concentration (4.8 μg/g soil) at high emission scenario of nano-sized TiO2. Using the same test organism another group showed that exposure to TiO2 NPs induced destabilization of cell membrane in the epithelium of digestive glands isolated from exposed animals. They also showed that this effect can be observed after just 30 minutes of exposure.


It’s also used in food products to provide a white color. Candies, cakes and creamers are examples of foods that may contain titanium dioxide for its color enhancing and bleaching properties.
It's also used in sunscreens as a UV filtering ingredient, helping to protect a person's skin by blocking absorption the ultraviolet light that can cause sunburn and cancer.


For a review published in 2023 in the journal Environmental Pollution, researchers examined E171 as a possible factor promoting obesity-related metabolic disorders. Because gut microbiota play an important role in immune function maintenance and development, and because titanium dioxide as a food additive has been shown to alter gut microbiota, researchers wanted to review “the dysregulations along the gut microbiota-immune system axis after oral TiO2 exposure compared to those reported in obese or diabetic patients, and to highlight potential mechanisms by which foodborne TiO2 nanoparticles may increase the susceptibility to develop obesity-related metabolic disorders.” The study authors discovered recurrent changes in the gut microbiota composition when exposed to titanium dioxide nanoparticles, with an imbalance of intestinal symbiotic microbiota. These changes and imbalances were also reported and played a role in the development of obesity, the authors wrote. This highlights “foodborne TiO2 nanoparticles as an endocrine disruptor-like chemical promoting obesity-related disorders,” the authors concluded.