- 3. In the production of a composite pigment the steps comprising slowly adding titanium oxide to a solution of barium sulphide while rapidly agitating the solution, mixing the resultant mass with a solution of zinc sulphate and separating'the composite precipitate.
- As the demand for titanium dioxide continues to rise, the China Titanium Dioxide Plant is poised to expand its production capacity and further strengthen its position in the market. By investing in cutting-edge technology, fostering innovation, and maintaining a commitment to sustainability, the plant is well-equipped to meet the challenges of the future and continue to drive growth in the Chinese titanium dioxide industry.
- France's ban on the food additive Titanium Dioxide (E171) took effect on January 1st, meaning products containing the whitening and opacity agent can no longer be sold in France. (6)
Pure PVB is non-toxic and harmless to human body. In addition, ethyl acetate or alcohol can be used as solvent, so PVB is widely used in printing ink of food containers and plastic packaging in European and American countries.
Storage safety properties
PVB can be stored for two years without affecting its quality as long as it is not in direct contact with water; PVB shall be stored in a dry and cool place and avoid direct sunlight. Heavy pressure shall be avoided during PVB storage.
Solubility
PVB is soluble in alcohol, ketone, ester and other solvents. The solubility of various solvents changes according to the functional group composition of PVB itself. Generally speaking, alcohol solvents are soluble, but methanol is more insoluble for those with high acetal groups; The higher the acetal group, the easier it is to dissolve in ketone solvents and ester solvents;
PVB is easily soluble in cellosolve solvents; PVB is only partially dissolved in aromatic solvents such as xylene and toluene; PVB is insoluble in hydrocarbon solvents.
Viscosity characteristics of PVB solution
The viscosity of PVB solution is greatly affected by the formula of solvent and the type of solvent; Generally speaking, if alcohol is used as solvent, the higher the molecular weight of alcohol, the higher the viscosity of PVB solution;
Aromatic solvents such as xylene and toluene and hydrocarbon solvents can be used as diluents to reduce the viscosity of PVB solution; The effect of PVB chemical composition on viscosity is summarized as follows: under the same solvent and the same content of each base, the higher the degree of polymerization, the higher the solution viscosity; Under the same solvent and the same degree of polymerization, the higher the acetal group or acetate group, the lower the solution viscosity.
Dissolution method of PVB
Where mixed solvents are used, the dissolution step is to first put aromatic solvents (such as xylene, toluene, etc.) or ester solvents (such as n-butyl acetate, ethyl acetate, etc.) into the mixing, slowly put PVB into the mixing, and then add alcohol solvents (such as n-butanol, ethanol, etc.) after PVB is dispersed and expanded,
At this time, the dissolution time can be shortened by heating; Using this dissolution method, the formation of lumpy PVB can be avoided (because the dissolution time will be several times after the formation of lumpy PVB), so the dissolution speed can be accelerated. Generally, the ratio of aromatic and alcohol solvents is 60 / 40 ~ 40 / 60 (weight ratio), and PVB solution with low viscosity can be prepared.
The solvent composition contains 2 ~ 3wt% water, which can improve the hydrogen bonding strength of alcohol solvents and help the solubility of PVB.
Processing properties
Although PVB resin is a thermoplastic, it has little processability before plasticizer is added. Once plasticizer is added, its processability is very easy.
The purpose of general coatings and adhesives is to change the resin characteristics by adding plasticizers to meet the application requirements, such as film softness, reducing the TG point of the resin, reducing the heat sealing temperature, maintaining low-temperature softness, etc.
Compatibility
PVB can be compatible with a variety of resins, such as phenolic resin, epoxy resin, alkyd resin and MELAMINE resin.
B-08sy, b-06sy and b-05sy with high acetal degree can be mixed with nitrocellulose in any proportion. PVB and alkyd resin are partially compatible. General PVB is compatible with low molecular weight epoxy resin, while high molecular weight epoxy resin needs PVB with high acetal degree to be compatible with each other.- The Dictionary of Art, Grove's Dictionaries Inc., New York, 1996 Comment: 'Pigments'
- Protective
Ability to scatter and absorb UV radiation makes TiO2 a crucial ingredient for sunscreen, protecting the skin from harmful, cancer-causing UV rays.- Protective
Different dermal cell types have been reported to differ in their sensitivity to nano-sized TiO2 . Kiss et al. exposed human keratinocytes (HaCaT), human dermal fibroblast cells, sebaceous gland cells (SZ95) and primary human melanocytes to 9 nm-sized TiO2 particles at concentrations from 0.15 to 15 μg/cm2 for up to 4 days. The particles were detected in the cytoplasm and perinuclear region in fibroblasts and melanocytes, but not in kerati-nocytes or sebaceous cells. The uptake was associated with an increase in the intracellular Ca2+ concentration. A dose- and time-dependent decrease in cell proliferation was evident in all cell types, whereas in fibroblasts an increase in cell death via apoptosis has also been observed. Anatase TiO2 in 20–100 nm-sized form has been shown to be cytotoxic in mouse L929 fibroblasts. The decrease in cell viability was associated with an increase in the production of ROS and the depletion of glutathione. The particles were internalized and detected within lysosomes. In human keratinocytes exposed for 24 h to non-illuminated, 7 nm-sized anatase TiO2, a cluster analysis of the gene expression revealed that genes involved in the “inflammatory response” and “cell adhesion”, but not those involved in “oxidative stress” and “apoptosis”, were up-regulated. The results suggest that non-illuminated TiO2 particles have no significant impact on ROS-associated oxidative damage, but affect the cell-matrix adhesion in keratinocytes in extracellular matrix remodelling. In human keratinocytes, Kocbek et al. investigated the adverse effects of 25 nm-sized anatase TiO2 (5 and 10 μg/ml) after 3 months of exposure and found no changes in the cell growth and morphology, mitochondrial function and cell cycle distribution. The only change was a larger number of nanotubular intracellular connections in TiO2-exposed cells compared to non-exposed cells. Although the authors proposed that this change may indicate a cellular transformation, the significance of this finding is not clear. On the other hand, Dunford et al. studied the genotoxicity of UV-irradiated TiO2 extracted from sunscreen lotions, and reported severe damage to plasmid and nuclear DNA in human fibroblasts. Manitol (antioxidant) prevented DNA damage, implying that the genotoxicity was mediated by ROS.
- our digestive tract through eating and drinking.
Lithopone
- Ponceau 4R, a vivid red azo dye, finds extensive applications in coloring various foods, drugs, and cosmetic products. Its production process within the factory is meticulously monitored to ensure that each batch meets stringent quality standards. The journey from raw materials to the finished product is a carefully choreographed sequence of chemical reactions, filtration, and drying processes, all performed under the vigilant eyes of skilled technicians.
- Resistant
Resistance to heat, light and weathering prevents degradation of paint and in films and embrittlement of plastics.- Resistant
We’re most often exposed to E171 through the foods we ingest. We find E171 in many food products, like popsicles, ice cream, gum, and more. Another way we ingest E171 is through pharmaceutical drugs. Many pills and capsules contain E171 as an inactive ingredient.
Lithopone B301, Lithopone B311 powder’s 2 main components:
Titanium dioxide manufacturer: CHTI
Références
But if thats not quite enough..............
The California plaintiff is apparently not the only one concerned about titanium dioxide. The European Union recently banned its use citing concerns about serious health consequences.

This article discusses the discovery of phosphorescent lithopone on watercolor drawings by American artist John La Farge dated between 1890 and 1905 and the history of lithopone in the pigment industry in the late 19th and early 20th centuries. Despite having many desirable qualities for use in white watercolor or oil paints, the development of lithopone as an artists' pigment was hampered by its tendency to darken in sunlight. Its availability to, and adoption by, artists remain unclear, as colormen's trade catalogs were generally not explicit in describing white pigments as containing lithopone. Further, lithopone may be mistaken for lead white during visual examination and its short-lived phosphorescence can be easily missed by the uninformed observer. Phosphorescent lithopone has been documented on only one other work-to-date: a watercolor by Van Gogh. In addition to the history of lithopone's manufacture, the article details the mechanism for its phosphorescence and its identification aided by Raman spectroscopy and spectrofluorimetry.
In their role as risk managers, the European Commission and Member States will now reflect on EFSA’s scientific advice and decide upon any appropriate regulatory measures or advice for consumers.
Topical Exposure
Lithopone B301, Lithopone B311 powder is widely used in coatings, printing ink, rubber, plastic industry, etc.
TiO2 comes in many different forms. However, only a few of these forms are considered food-grade (acceptable to be added to food). Many studies that raised concern about the safety of TiO2, including the concern for genotoxicity, used forms of TiO2 that are not considered acceptable for use in food and have different properties than food-grade TiO2. Other studies did use food-grade TiO2, but took steps to break the material down into smaller particles than what would normally be found in food.