In conclusion, the demand for dyes and pigments is on the rise, and having a reliable titanium dioxide factory like CAS 13463-67-7 is essential for meeting this demand. With its dedication to quality, sustainability, and innovation, CAS 13463-67-7 is well-positioned to continue serving the needs of its customers and the industry as a whole.
- May chalk with exposure to UV light.
- Another benefit of using TiO2 in paper production is its UV-blocking properties
tio2 used in paper supplier. TiO2 has the ability to absorb and reflect harmful ultraviolet (UV) radiation, which can cause paper to yellow and degrade over time. By incorporating TiO2 into paper products, paper suppliers can enhance their durability and longevity, ensuring that they remain looking fresh and vibrant for longer periods. This is particularly important for archival papers and documents that need to be preserved for generations.
Analyst Insight
Titanium dioxide, also called titania, is an odorless white powder and naturally occurring mineral that is widely used as a pigment for its brightness and whitening effects on a variety of materials, such as paint, plastic, paper, cosmetics, sunscreens, toothpastes and foods.
Titanium dioxide nanoparticles may accumulate and cause DNA damage
Titanium dioxide, a naturally occurring oxide of titanium, is widely recognized for its exceptional properties and versatility in various industries. Among its numerous applications, the production of tires stands out as a crucial area where titanium dioxide plays an indispensable role. This article aims to explore the significance of wholesale titanium dioxide in the tire manufacturing sector, emphasizing its properties, benefits, and the overall impact on product quality.
Blanc de Comines, 27 per cent zinc sulphide, 70.5 per cent barium sulphate, 2.5 per cent zinc carbonate.
Titanium dioxide nanoparticles may accumulate and cause DNA damage
There are two primary forms of titanium dioxide commercially available: anatase and rutile. The rutile form is typically used in sunscreens due to its superior ability to handle UV rays and stability in the presence of UV light. The anatase form is typically used in other types of products, such as paint. Another plus of the rutile form is that its UVA protection extends past 400 nanometers, which is the upper limit of UVA.

Recent analyses of food-grade TiO2 samples have found that a significant portion of particles may be within the nanoscale. These particles (also known as nanoparticles) range in size from 1 to 100 nm, where 1 nm equals 1 billionth of a metre (the width of a typical human hair is 80,000 to 100,000 nm).
Titanium dioxide R-996 is mainly used in powder coatings, water-based and solvent-based external coatings, high-grade color masterbatches, plastics, rubber, inks, high-grade paper and wax paper and leather upholstery fabrics, cosmetics, suitable for high-grade interior coatings, high-solid paints, Road marking paints, marine paints and inks, and also used in the plastics, rubber, paper and leather industries.
A 2023 study published in the journal Particle and Fibre Toxicology set out to examine the impact of titanium dioxide nanoparticles in mice “on the course and prognosis of ulcerative colitis,” by creating an ulcerative colitis disease model. Researchers found that the titanium dioxide nanoparticles significantly increased the severity of colitis. They also “decreased the body weight, increased the disease activity index and colonic mucosa damage index scores, shortened the colonic length, increased the inflammatory infiltration in the colon.” Researchers concluded: “Oral intake of TiO2 nanoparticles could affect the course of acute colitis in exacerbating the development of ulcerative colitis, prolonging the ulcerative colitis course and inhibiting ulcerative colitis recovery.”
Titanium alloy is widely used as a biomaterial due to its superior biocompatibility, mechanical properties close to human bones, and enhanced corrosion resistance. These properties have made the alloys suitable for use in a wide spectrum of biomedical applications including artificial bones, artificial joints, dental roots, and medical devices. The excellent performance of titanium alloy is mainly due to the oxide film as shown in Figure 1 [1]. The functional composition of the oxide film is mainly titanium dioxide (TiO2). Titanium dioxide has good biocompatibility, stable chemical property, and low solubility in water, which prevents substrate metal ions from dissolution. Furthermore, it also improves the wear and fatigue resistance of implants in the human body.

How can food businesses comply with this Regulation?